organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Laura Gasque,^a* Edgar Mijangos^a and Sylvain Bernès^b

^aDepartamento de Química Inorgánica, Facultad de Química, UNAM, Ciudad Universitaria, 04510 México, DF, Mexico, and ^bCentro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, AP 1613, 72000 Puebla, Pue., Mexico

Correspondence e-mail: gasquel@servidor.unam.mx

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.041 wR factor = 0.117 Data-to-parameter ratio = 12.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4,4'-(2-Methyl-1*H*-imidazole-4,5-diyl)bis[2(*S*)methyl-3-azoniabutanoate] acetic acid monohydrate

In the title compound, $C_{12}H_{20}N_4O_4 \cdot C_2H_4O_2 \cdot H_2O$, the main fragment contains two L-alanine residues with a zwitterionic structure. The crystal structure is characterized by a two-dimensional network of $O-H \cdots O$, $O-H \cdots N$ and $N-H \cdots O$ hydrogen bonds.

Comment

The preparation and characterization of imidazole derivatives is of current interest, because of their ability to form metal complexes with a wide variety of chemical, magnetic and catalytic properties (Baesjou *et al.*, 1998; Colacio *et al.*, 2000; Kamaraj *et al.*, 2003). In previous work (Mendoza-Díaz *et al.*, 1996, 2002), we have reported the synthesis and crystal structures of ligands obtained *via* the Mannich addition of primary amines on 2-methylimidazole, to give a tenmembered cyclic diazecine, incorporating two imidazoles and two amines. Following this line of research, we now describe a non-cyclic ligand, (I), obtained from a similar reaction between 2-methylimidazole and L-alanine, and crystallized with acetic acid and water.

The asymmetric unit of (I) consists of a zwitterion of formula $C_{12}H_{20}N_4O_4$, an acetic acid molecule and a water molecule. The main molecule contains two alanine groups bonded, *via* two methylene groups, to positions 4 and 5 of a 2-methylimidazole group (Fig. 1). The geometry of the imidazole ring is as expected (Table 1), with C=C and C=N bond lengths ranging from 1.329 (3) to 1.378 (3) Å. Atom H1 is clearly bonded to N1, and no evidence can be found, at least in the solid state, for a tautomerism in this heterocycle. The imidazole group thus has potential for coordination through atom N3. Both alanine groups have zwitterionic structures, with both carboxylate groups having similar C=O bond lengths [1.231 (3)–1.259 (3) Å] and protonated amine groups displaying characteristic C-N single bond lengths of around

 \bigcirc 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 16 December 2004 Accepted 4 January 2005 Online 15 January 2005

Figure 1 The structure of (I), with displacement ellipsoids at the 30% probability level.

1.50 Å [1.497 (3)–1.502 (3) Å]. This zwitterionic structure for alanine has recently been observed in a phosphorus-functionalized trimeric alanine derivative (Raghuraman *et al.*, 2003), with a geometry identical, within the s.u. values, to that observed in (I).

It should be emphasized that the above description of (I) is unambiguous, since high-resolution diffraction data (0.71 Å) allowed the precise determination of the positions of H atoms bonded to N and O atoms. Moreover, the distribution of charges is consistent with pK_a values determined potentiometrically; amine functional groups have pK_a values of 9.81 and 7.67, while acid groups have pK_a values of 2.04 and 1.97. Since (I) was crystallized at pH ~5.7, the expected zwitterions in the solid state for the alanine moieties are those actually observed. Regarding the imidazole group ($pK_a = 3.79$), it should compete with acetic acid, which has a pK_a of 4.72. The solid state structure indicates that the corresponding H atom is essentially localized on the acetate rather than on the imidazole ring. However, a small contribution of an imidazolium form should not be completely ruled out.

As expected, a complex hydrogen-bonding scheme (Table 2) is observed in (I), involving all H atoms bonded to N and O atoms (Fig. 2). The strongest hydrogen bonds arise from the acetic acid molecule, which forms an $R_2^2(9)$ motif with imidazole atom N3 and protonated amine atom N15. A striking feature is the geometry of the strong O23-H3···N3 bond, where the H atom is placed close to the mid-point of the formal donor and acceptor atoms, with an angle very close to an ideal value of 180°. As previously described, this situation is a direct consequence of the close pK_a values of the acetic acid and imidazole NH function. The water molecule serves as donor and acceptor, giving $R_2^1(9)$ and $R_1^2(4)$ motifs with the alanine functional groups. Finally, two symmetry-related molecules are bonded through an $R_2^2(9)$ motif, including the N1/H1 functionality of the imidazole ring. The overall connectivity generates a two-dimensional network, based on [010] and [001] vectors.

Figure 2

Part of the crystal structure of (I), viewed almost down the *b* axis, showing the hydrogen-bonding scheme (dashed lines). Two zwitterions, two acetic acid molecules and four water molecules are shown in order to depict all the hydrogen bonds listed in Table 2. For clarity, H atoms not participating in hydrogen bonding, *i.e.* belonging to methyl, methylene and methine groups, have been omitted. [Symmetry codes: (i) -x, $y - \frac{1}{2}$, 1 - z; (ii) -x, $y - \frac{1}{2}$, -z; (iii) -x, $y - \frac{1}{2}$, -z.]

Experimental

Compound (I) was obtained by mixing L-alanine (3.56 g, 40 mmol) and 2-methylimidazole (1.642 g, 20 mmol), each previously dissolved in water (20 ml). To this mixture, a 37% formaldehyde solution (4.8 ml, 60 mmol) was added dropwise with stirring, followed by the dropwise addition of a concentrated solution of KOH, until the pH reached a value of 12.5. The mixture was stirred at 328 K for 24 h, after which acetic acid was added to lower the pH to 5.7. This solution was concentrated to one-third of its original volume and left to stand. Transparent crystals of (I) suitable for X-ray diffraction were collected after two days (yield 44%). Analysis found: C 47.13, H 7.09, N 15.90%; calculated for $C_{14}H_{26}N_4O_7$: C 46.40, H 7.23, N, 15.46%.

Crystal data	
$C_{12}H_{20}N_4O_4 \cdot C_2H_4O_2 \cdot H_2O$ $M_r = 362.39$ Monoclinic, $P2_1$ a = 13.337 (3) Å b = 5.3977 (14) Å c = 14.312 (4) Å $\beta = 109.898$ (19)° V = 968.8 (4) Å ³ Z = 2	$D_x = 1.242 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 38 reflections $\theta = 3.3-13.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 298 (1) K Prism, colorless $0.48 \times 0.26 \times 0.26 \text{ mm}$
Data collection	
Bruker P4 diffractometer ω scans 4070 measured reflections 3107 independent reflections 2403 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ $\theta_{\text{max}} = 30.0^{\circ}$	$h = -1 \rightarrow 18$ $k = -1 \rightarrow 7$ $l = -20 \rightarrow 19$ 3 standard reflections every 97 reflections intensity decay: 1%

organic papers

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0655P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 0.0268P]
$wR(F^2) = 0.117$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.0001$
3107 reflections	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ \AA}^{-3}$
254 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected geometric parameters (Å, °).

N1-C2	1.332 (3)	C10-O12	1.238 (2)
N1-C5	1.374 (3)	C14-N15	1.499 (3)
C2-N3	1.329 (3)	N15-C16	1.499 (2)
N3-C4	1.378 (3)	C17-O18	1.231 (3)
C7-N8	1.502 (3)	C17-O19	1.255 (3)
N8-C9	1.497 (3)	C22-O24	1.212 (3)
C10-O11	1.259 (3)	C22-O23	1.280 (4)
O12-C10-O11	127.25 (18)	O19-C17-C16	115.4 (2)
O12-C10-C9	119.45 (19)	O24-C22-O23	123.0 (3)
O11-C10-C9	113.26 (16)	O24-C22-C21	120.7 (3)
O18-C17-O19	125.5 (2)	O23-C22-C21	116.3 (3)
O18-C17-C16	119.05 (17)		

Ta	ble	e 2
----	-----	-----

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O23−H3···N3	1.06 (3)	1.51 (3)	2.569 (3)	177 (3)
N8-H8a···O25	0.94 (3)	1.90 (3)	2.823 (2)	170 (3)
N15−H15a···O25	0.89 (3)	1.97 (3)	2.817 (2)	159 (3)
N15-H15bO24	0.93 (3)	1.90 (3)	2.832 (3)	174 (3)
$N1-H1\cdots O11^{i}$	0.90 (3)	1.70 (3)	2.585 (2)	168 (4)
$N8-H8b\cdots O12^{i}$	0.99 (3)	1.85 (3)	2.815 (2)	167 (3)
$O25-H251\cdots O19^{ii}$	0.87 (4)	1.78 (4)	2.636 (3)	169 (3)
$O25-H252\cdots O18^{iii}$	0.85 (4)	1.99 (4)	2.838 (2)	172 (3)
$O25-H252\cdots O19^{iii}$	0.85 (4)	2.42 (4)	3.027 (3)	129 (3)

Symmetry codes: (i) $-x, y - \frac{1}{2}, 1 - z$; (ii) $-x, y - \frac{1}{2}, -z$; (iii) $-x, y + \frac{1}{2}, -z$.

In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration of (I) was assigned on the basis of the known configuration of the L-alanine used as starting material. H atoms bonded to C atoms were placed at idealized positions and refined using a riding model, with $U_{iso}(H) = xU_{eq}$ (parent C atom). The constrained distances and x parameters are the default values in *SHELXTL-Plus* (Sheldrick, 1998): methine: C– H = 0.98 Å, x = 1.2; methylene: C–H = 0.97 Å, x = 1.2; methyl: C– H = 0.96 Å, x = 1.5. Other H atoms were found in difference maps and refined with free coordinates and fixed isotropic displacement parameters [$U_{iso}(H) = 1.5U_{eq}$ (parent atom)]. In the case of H3, atom N3 [$U_{eq} = 0.046$ (1) Å²] was chosen as parent atom rather than O23 [$U_{eq} = 0.104$ (1) Å²]. Refinement attempts with O23 as parent atom for H3 resulted in an O23–H3 bond length of 1.15 (6) Å, while the present refinement yields O23–H3 = 1.06 (3) Å, which seems to be more reasonable for a hydroxy group. This atom H has been labeled H3 even though formally belonging to the acetate group.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1998); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus and MERCURY (Bruno et al., 2002); software used to prepare material for publication: SHELXTL-Plus.

LG thanks CONACyT (grant No. 34847-E) for financial support.

References

- Baesjou, P. J., Driessen, W. L., Challa, G. & Reedijk, J. (1998). J. Mol. Catal. A Chem. 140, 241–253.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.
- Colacio, E., Ghazi, M., Kivekas, R., Klinga, M., Lloret, F. & Moreno, J. M. (2000). Inorg. Chem. 39, 2770–2776.
- Kamaraj, K., Kim, E., Galliker, B., Zakharov, L. N., Rheingold, A. L., Zuberbuhler, A. D. & Karlin, K. D. (2003). J. Am. Chem. Soc. 125, 6028– 6029.
- Mendoza-Díaz, G., Driessen, W. L. & Reedijk, J. (1996). Acta Cryst. C52, 960– 962.
- Mendoza-Díaz, G., Driessen, W. L., Reedijk, J., Gorter, S., Gasque, L. & Thompson, K. R. (2002). *Inorg. Chim. Acta*, 339, 51–59.

Raghuraman, K., Katti, K. K., Barbour, L. J., Pillarsetty, N., Barnes, C. L. & Katti, K. V. (2003). J. Am. Chem. Soc. 125, 6955–6961.

- Sheldrick, G. M. (1998). SHELXTL-Plus. Release 5.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.